info.lm.Rd
Extended summary information for an object of class "lm"
.
# S3 method for lm
info(x)
an object of class "lm"
A list of class c("info.lm"
, "list"
).
overall
fit.indices
F.test
anova.table
coefficient.table
The function info.lm
produces a summary for a
linear model fitted with the lm
or
regress
function. There are five sections.
Model formula, data frame, and sample size (N).
R squared, adjusted R squared, Akaike's information criterion (AIC), root mean square error (RMSE), and mean absolute deviation (MAE).
F-statistic, degrees of freedom, p-value.
ANOVA table with type III (marginal) effects.
Regression coefficients (B), standardized regression coefficients (B*) standard errors (SE), t-values, and p-values.
The ANOVA table is obtained from the Anova
function in
the car
package. The standardized regression coefficients are
obtained for the lm.beta
function in the
lm.beta
package.
fit <- lm(mpg ~ hp + wt + accel + origin, data = auto_mpg)
info(fit)
#> MULTIPLE REGRESSION SUMMARY
#> Model: mpg ~ hp + wt + accel + origin
#> Data : auto_mpg
#> N : 388
#>
#> Fit Indices
#> R.Squared Adj.R.Squared AIC RMSE MAE
#> 0.718 0.715 2217 4.14 3.15
#>
#> Omnibus Test
#> F(5,382) = 194.921, p < <2e-16 ***
#>
#> Anova Table (type III tests)
#> Sum Sq DF F value Pr(>F)
#> (Intercept) 5363.242 1 308.296 <0.001 ***
#> hp 217.649 1 12.511 <0.001 ***
#> wt 1007.306 1 57.903 <0.001 ***
#> accel 0.952 1 0.055 0.815
#> origin 307.094 2 8.826 <0.001 ***
#> Residuals 6645.428 382
#>
#> Regression Coefficients
#> B B* SE t Pr(>|t|)
#> (Intercept) 43.26563 0.0000 2.464104 17.558 5.04e-51 ***
#> hp -0.05632 -0.2783 0.015922 -3.537 4.54e-04 ***
#> wt -0.00477 -0.5180 0.000627 -7.609 2.17e-13 ***
#> accel -0.02862 -0.0101 0.122391 -0.234 8.15e-01
#> origin2 0.96892 0.0472 0.646763 1.498 1.35e-01
#> origin3 2.76148 0.1419 0.659001 4.190 3.46e-05 ***