regression.Rmd
In this analysis, we’ll develop a model for predicting fuel
efficiency from car characteristics using the auto_mpg
data
frame.
Model fitting is normally an iterative process. We’ll skip this to keep things simple.
info(fit)
#> MULTIPLE REGRESSION SUMMARY
#> Model: mpg ~ .
#> Data : auto_mpg
#> N : 388
#>
#> Fit Indices
#> R.Squared Adj.R.Squared AIC RMSE MAE
#> 0.824 0.821 2040 3.27 2.5
#>
#> Omnibus Test
#> F(8,379) = 222.481, p < <2e-16 ***
#>
#> Anova Table (type III tests)
#> Sum Sq DF F value Pr(>F)
#> (Intercept) 166.28 1 15.211 <0.001 ***
#> cyl 24.392 1 2.231 0.136
#> disp 109.393 1 10.007 0.002 **
#> hp 17.858 1 1.634 0.202
#> wt 1160.521 1 106.16 <0.001 ***
#> accel 7.599 1 0.695 0.405
#> year 2471.376 1 226.073 <0.001 ***
#> origin 355.806 2 16.274 <0.001 ***
#> Residuals 4143.146 379
#>
#> Regression Coefficients
#> B B* SE t Pr(>|t|)
#> (Intercept) -18.29959 0.0000 4.692103 -3.900 1.14e-04 ***
#> cyl -0.48327 -0.1056 0.323528 -1.494 1.36e-01
#> disp 0.02450 0.3290 0.007746 3.163 1.69e-03 **
#> hp -0.01754 -0.0867 0.013725 -1.278 2.02e-01
#> wt -0.00683 -0.7409 0.000663 -10.303 4.12e-22 ***
#> accel 0.08242 0.0292 0.098848 0.834 4.05e-01
#> year 0.78281 0.3688 0.052063 15.036 2.11e-40 ***
#> origin2 2.62905 0.1282 0.568612 4.624 5.18e-06 ***
#> origin3 2.88572 0.1483 0.556654 5.184 3.54e-07 ***
diagnostics(fit)
relimp(fit)
#> working ...
performance(fit)
#> Multiple Regression Performance
#> Data: auto_mpg
#> N: 388
#>
#> Model: lm(formula = mpg ~ ., data = auto_mpg)
#>
#> RMSE Rsquared MAE
#> 3.2678 0.8244 2.5047