info.Rd
Extended summary information for a model fit. Currently linear and logistic regression models are supported.
info(x)
an object of type lm
or glm
. If glm
, then
family
must be binomial
.
info
is a generic S3 function providing detailed model information.
The goal is to provide more extensive information than currently
produced by summary
. See the related methods for
details.
#######################
# multiple regression #
#######################
fit <- lm(mpg ~ hp + wt + accel + origin, data = auto_mpg)
info(fit)
#> MULTIPLE REGRESSION SUMMARY
#> Model: mpg ~ hp + wt + accel + origin
#> Data : auto_mpg
#> N : 388
#>
#> Fit Indices
#> R.Squared Adj.R.Squared AIC RMSE MAE
#> 0.718 0.715 2217 4.14 3.15
#>
#> Omnibus Test
#> F(5,382) = 194.921, p < <2e-16 ***
#>
#> Anova Table (type III tests)
#> Sum Sq DF F value Pr(>F)
#> (Intercept) 5363.242 1 308.296 <0.001 ***
#> hp 217.649 1 12.511 <0.001 ***
#> wt 1007.306 1 57.903 <0.001 ***
#> accel 0.952 1 0.055 0.815
#> origin 307.094 2 8.826 <0.001 ***
#> Residuals 6645.428 382
#>
#> Regression Coefficients
#> B B* SE t Pr(>|t|)
#> (Intercept) 43.26563 0.0000 2.464104 17.558 5.04e-51 ***
#> hp -0.05632 -0.2783 0.015922 -3.537 4.54e-04 ***
#> wt -0.00477 -0.5180 0.000627 -7.609 2.17e-13 ***
#> accel -0.02862 -0.0101 0.122391 -0.234 8.15e-01
#> origin2 0.96892 0.0472 0.646763 1.498 1.35e-01
#> origin3 2.76148 0.1419 0.659001 4.190 3.46e-05 ***
#######################
# logistic regression #
#######################
fit2 <- glm(caesarian ~ age + bp + delivery.time, family = binomial, data = caesarian)
info(fit2)
#> LOGISTIC REGRESSION SUMMARY
#> Formula: caesarian ~ age + bp + delivery.time
#> Data : caesarian
#> N : 80
#>
#> Predicted category: yes
#>
#> Omnibus Test
#> Chi-square(5) = 15.2455, p = 0.009363 **
#>
#> Fit Measures
#> Stukel's GOF Test: Chi-square(2) = 0.0663, p < 0.9674
#> Tjur's Psuedo-R.squared: 0.1769
#> AIC: 105.8512
#>
#> Anova Table (type III tests)
#> LR Chisq DF Pr(>Chisq)
#> age 0.6465 1 0.421353
#> bp 12.1255 2 0.002328 **
#> delivery.time 6.9476 2 0.030999 *
#>
#> Logistic Regression Coefficients
#> B SE z Pr(>|z|)
#> (Intercept) 1.02083 1.49393 0.6833 0.494407
#> age 0.03944 0.04928 0.8003 0.423531
#> bpnormal -2.05065 0.71483 -2.8687 0.004122 **
#> bphigh -0.46110 0.75158 -0.6135 0.539542
#> delivery.timepremature -1.29707 0.67785 -1.9135 0.055685
#> delivery.timelatecomer -1.53961 0.70396 -2.1871 0.028737 *
#>
#> Odds Ratios (with 95% Confidence Intervals)
#> Odds Ratio 2.5% 97.5%
#> age 1.0402 0.94482 1.1489
#> bpnormal 0.1287 0.02790 0.4775
#> bphigh 0.6306 0.13739 2.7408
#> delivery.timepremature 0.2733 0.06659 0.9889
#> delivery.timelatecomer 0.2145 0.04907 0.8064