Housing Values in Suburbs of Boston
Boston
A data frame with 506 rows and 14 variables:
crimper capita crime rate by town.
znproportion of residential land zoned for lots over 25,000 sq.ft.
indusproportion of non-retail business acres per town.
chasCharles River dummy variable (= 1 if tract bounds river; 0 otherwise).
noxnitrogen oxides concentration (parts per 10 million).
rmaverage number of rooms per dwelling.
ageproportion of owner-occupied units built prior to 1940.
disweighted mean of distances to five Boston employment centres.
radindex of accessibility to radial highways.
taxfull-value property-tax rate per $10,000.
ptratiopupil-teacher ratio by town.
blackproportion of blacks by town.
lstatlower status of the population (percent).
medvmedian value of owner-occupied homes in $1000s.
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102.
Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
The Boston data frame was obtained from Venables and Ripley's MASS package.
The data utilize census tracts in the Boston Standard Metropolitatn
Statistical Area in 1970. Two changes have been made from this original
dataset. The dollar values for tax and
medv have been converted to 2020 US dollars (assuming a 299.4%
cumulative inflation rate). Additionally, the black variable has
been transformed from its original metric
(1000*(proportion of blacks by town - 0.63)^2) to a simple the proportion
of blacks by town.
#> #> The data frame Boston has 506 observations and 14 variables. #> #> Overall #> pos varname type n_unique n_miss pct_miss #> 1 crim numeric 504 0 0% #> 2 zn numeric 26 0 0% #> 3 indus numeric 76 0 0% #> 4 chas integer 2 0 0% #> 5 nox numeric 81 0 0% #> 6 rm numeric 446 0 0% #> 7 age numeric 356 0 0% #> 8 dis numeric 412 0 0% #> 9 rad integer 9 0 0% #> 10 tax numeric 66 0 0% #> 11 ptratio numeric 46 0 0% #> 12 black numeric 357 0 0% #> 13 lstat numeric 455 0 0% #> 14 medv numeric 229 0 0% #> #> Numeric Variables #> n mean sd skew min p25 median p75 max #> crim 506 3.61 8.60 5.19 0.01 0.08 0.26 3.68 88.98 #> zn 506 11.36 23.32 2.21 0.00 0.00 0.00 12.50 100.00 #> indus 506 11.14 6.86 0.29 0.46 5.19 9.69 18.10 27.74 #> chas 506 0.07 0.25 3.39 0.00 0.00 0.00 0.00 1.00 #> nox 506 0.55 0.12 0.72 0.38 0.45 0.54 0.62 0.87 #> rm 506 6.28 0.70 0.40 3.56 5.89 6.21 6.62 8.78 #> age 506 68.57 28.15 -0.60 2.90 45.02 77.50 94.07 100.00 #> dis 506 3.80 2.11 1.01 1.13 2.10 3.21 5.19 12.13 #> rad 506 9.55 8.71 1.00 1.00 4.00 5.00 24.00 24.00 #> tax 506 1628.87 672.46 0.67 746.13 1113.21 1316.70 2657.34 2836.89 #> ptratio 506 18.46 2.16 -0.80 12.60 17.40 19.05 20.20 22.00 #> black 506 1.22 0.11 -3.34 0.65 1.24 1.26 1.26 1.26 #> lstat 506 12.65 7.14 0.90 1.73 6.95 11.36 16.96 37.97 #> medv 506 89.91 36.70 1.10 19.95 67.93 84.59 99.75 199.50