Housing Values in Suburbs of Boston

Boston

Format

A data frame with 506 rows and 14 variables:

crim

per capita crime rate by town.

zn

proportion of residential land zoned for lots over 25,000 sq.ft.

indus

proportion of non-retail business acres per town.

chas

Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).

nox

nitrogen oxides concentration (parts per 10 million).

rm

average number of rooms per dwelling.

age

proportion of owner-occupied units built prior to 1940.

dis

weighted mean of distances to five Boston employment centres.

rad

index of accessibility to radial highways.

tax

full-value property-tax rate per $10,000.

ptratio

pupil-teacher ratio by town.

black

proportion of blacks by town.

lstat

lower status of the population (percent).

medv

median value of owner-occupied homes in $1000s.

Source

Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102.

Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.

Details

The Boston data frame was obtained from Venables and Ripley's MASS package. The data utilize census tracts in the Boston Standard Metropolitatn Statistical Area in 1970. Two changes have been made from this original dataset. The dollar values for tax and medv have been converted to 2020 US dollars (assuming a 299.4% cumulative inflation rate). Additionally, the black variable has been transformed from its original metric (1000*(proportion of blacks by town - 0.63)^2) to a simple the proportion of blacks by town.

Examples

qacr::contents(Boston)
#> #> The data frame Boston has 506 observations and 14 variables. #> #> Overall #> pos varname type n_unique n_miss pct_miss #> 1 crim numeric 504 0 0% #> 2 zn numeric 26 0 0% #> 3 indus numeric 76 0 0% #> 4 chas integer 2 0 0% #> 5 nox numeric 81 0 0% #> 6 rm numeric 446 0 0% #> 7 age numeric 356 0 0% #> 8 dis numeric 412 0 0% #> 9 rad integer 9 0 0% #> 10 tax numeric 66 0 0% #> 11 ptratio numeric 46 0 0% #> 12 black numeric 357 0 0% #> 13 lstat numeric 455 0 0% #> 14 medv numeric 229 0 0% #> #> Numeric Variables #> n mean sd skew min p25 median p75 max #> crim 506 3.61 8.60 5.19 0.01 0.08 0.26 3.68 88.98 #> zn 506 11.36 23.32 2.21 0.00 0.00 0.00 12.50 100.00 #> indus 506 11.14 6.86 0.29 0.46 5.19 9.69 18.10 27.74 #> chas 506 0.07 0.25 3.39 0.00 0.00 0.00 0.00 1.00 #> nox 506 0.55 0.12 0.72 0.38 0.45 0.54 0.62 0.87 #> rm 506 6.28 0.70 0.40 3.56 5.89 6.21 6.62 8.78 #> age 506 68.57 28.15 -0.60 2.90 45.02 77.50 94.07 100.00 #> dis 506 3.80 2.11 1.01 1.13 2.10 3.21 5.19 12.13 #> rad 506 9.55 8.71 1.00 1.00 4.00 5.00 24.00 24.00 #> tax 506 1628.87 672.46 0.67 746.13 1113.21 1316.70 2657.34 2836.89 #> ptratio 506 18.46 2.16 -0.80 12.60 17.40 19.05 20.20 22.00 #> black 506 1.22 0.11 -3.34 0.65 1.24 1.26 1.26 1.26 #> lstat 506 12.65 7.14 0.90 1.73 6.95 11.36 16.96 37.97 #> medv 506 89.91 36.70 1.10 19.95 67.93 84.59 99.75 199.50